
This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy
and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for and substituting
known values gives

Discussion

Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to
potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their
corresponding potential energies, just as we did in Example 7.8. Note also that we do not consider details of the path
taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a
tremendous simplification, because the path may be complicated and forces may vary along the way.

PHET EXPLORATIONS

Energy Skate Park
Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic
energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Click to view content (https://phet.colorado.edu/sims/html/energy-skate-park-basics/latest/energy-skate-park-basics_en.html)

Figure 7.13

7.5 Nonconservative Forces
Nonconservative Forces and Friction
Forces are either conservative or nonconservative. Conservative forces were discussed in Conservative Forces and Potential
Energy. A nonconservative force is one for which work depends on the path taken. Friction is a good example of a
nonconservative force. As illustrated in Figure 7.14, work done against friction depends on the length of the path between the
starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative
forces. An important characteristic is that the work done by a nonconservative force adds or removes mechanical energy from a
system. Friction, for example, creates thermal energy that dissipates, removing energy from the system. Furthermore, even if
the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense
as well.
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Figure 7.14 The amount of the happy face erased depends on the path taken by the eraser between points A and B, as does the work done

against friction. Less work is done and less of the face is erased for the path in (a) than for the path in (b). The force here is friction, and

most of the work goes into thermal energy that subsequently leaves the system (the happy face plus the eraser). The energy expended

cannot be fully recovered.

How Nonconservative Forces Affect Mechanical Energy
Mechanical energy may not be conserved when nonconservative forces act. For example, when a car is brought to a stop by
friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. Figure
7.15 compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as
that described in Figure 7.15(a) first before studying more complicated systems as in Figure 7.15(b).

Figure 7.15 Comparison of the effects of conservative and nonconservative forces on the mechanical energy of a system. (a) A system with

only conservative forces. When a rock is dropped onto a spring, its mechanical energy remains constant (neglecting air resistance) because

the force in the spring is conservative. The spring can propel the rock back to its original height, where it once again has only potential

energy due to gravity. (b) A system with nonconservative forces. When the same rock is dropped onto the ground, it is stopped by

nonconservative forces that dissipate its mechanical energy as thermal energy, sound, and surface distortion. The rock has lost mechanical

energy.

How the Work-Energy Theorem Applies
Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will
see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in Kinetic
Energy and the Work-Energy Theorem, the work-energy theorem states that the net work on a system equals the change in its
kinetic energy, or . The net work is the sum of the work by nonconservative forces plus the work by conservative
forces. That is,

so that
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where is the total work done by all nonconservative forces and is the total work done by all conservative forces.

Figure 7.16 A person pushes a crate up a ramp, doing work on the crate. Friction and gravitational force (not shown) also do work on the

crate; both forces oppose the person’s push. As the crate is pushed up the ramp, it gains mechanical energy, implying that the work done by

the person is greater than the work done by friction.

Consider Figure 7.16, in which a person pushes a crate up a ramp and is opposed by friction. As in the previous section, we note
that work done by a conservative force comes from a loss of gravitational potential energy, so that . Substituting
this equation into the previous one and solving for gives

This equation means that the total mechanical energy changes by exactly the amount of work done by
nonconservative forces. In Figure 7.16, this is the work done by the person minus the work done by friction. So even if energy is
not conserved for the system of interest (such as the crate), we know that an equal amount of work was done to cause the change
in total mechanical energy.

We rearrange to obtain

This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If is
positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in Figure 7.16. If is
negative, then mechanical energy is decreased, such as when the rock hits the ground in Figure 7.15(b). If is zero, then
mechanical energy is conserved, and nonconservative forces are balanced. For example, when you push a lawn mower at
constant speed on level ground, your work done is removed by the work of friction, and the mower has a constant energy.

Applying Energy Conservation with Nonconservative Forces
When no change in potential energy occurs, applying amounts to applying the work-energy
theorem by setting the change in kinetic energy to be equal to the net work done on the system, which in the most general case
includes both conservative and nonconservative forces. But when seeking instead to find a change in total mechanical energy in
situations that involve changes in both potential and kinetic energy, the previous equation
says that you can start by finding the change in mechanical energy that would have resulted from just the conservative forces,
including the potential energy changes, and add to it the work done, with the proper sign, by any nonconservative forces
involved.

EXAMPLE 7.9

Calculating Distance Traveled: How Far a Baseball Player Slides
Consider the situation shown in Figure 7.17, where a baseball player slides to a stop on level ground. Using energy
considerations, calculate the distance the 65.0-kg baseball player slides, given that his initial speed is 6.00 m/s and the force of
friction against him is a constant 450 N.
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Figure 7.17 The baseball player slides to a stop in a distance . In the process, friction removes the player’s kinetic energy by doing an

amount of work equal to the initial kinetic energy.

Strategy

Friction stops the player by converting his kinetic energy into other forms, including thermal energy. In terms of the work-
energy theorem, the work done by friction, which is negative, is added to the initial kinetic energy to reduce it to zero. The work
done by friction is negative, because is in the opposite direction of the motion (that is, , and so ). Thus

. The equation simplifies to

or

This equation can now be solved for the distance .

Solution

Solving the previous equation for and substituting known values yields

Discussion

The most important point of this example is that the amount of nonconservative work equals the change in mechanical energy.
For example, you must work harder to stop a truck, with its large mechanical energy, than to stop a mosquito.

EXAMPLE 7.10

Calculating Distance Traveled: Sliding Up an Incline
Suppose that the player from Example 7.9 is running up a hill having a incline upward with a surface similar to that in the
baseball stadium. The player slides with the same initial speed, and the frictional force is still 450 N. Determine how far he
slides.
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Figure 7.18 The same baseball player slides to a stop on a slope.

Strategy

In this case, the work done by the nonconservative friction force on the player reduces the mechanical energy he has from his
kinetic energy at zero height, to the final mechanical energy he has by moving through distance to reach height along the
hill, with . This is expressed by the equation

Solution

The work done by friction is again ; initially the potential energy is and the kinetic energy is
; the final energy contributions are for the kinetic energy and for the

potential energy.

Substituting these values gives

Solve this for to obtain

Discussion

As might have been expected, the player slides a shorter distance by sliding uphill. Note that the problem could also have been
solved in terms of the forces directly and the work energy theorem, instead of using the potential energy. This method would
have required combining the normal force and force of gravity vectors, which no longer cancel each other because they point in
different directions, and friction, to find the net force. You could then use the net force and the net work to find the distance
that reduces the kinetic energy to zero. By applying conservation of energy and using the potential energy instead, we need only
consider the gravitational potential energy , without combining and resolving force vectors. This simplifies the solution
considerably.
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Making Connections: Take-Home Investigation—Determining Friction from the Stopping
Distance
This experiment involves the conversion of gravitational potential energy into thermal energy. Use the ruler, book, and
marble from Take-Home Investigation—Converting Potential to Kinetic Energy. In addition, you will need a foam cup with
a small hole in the side, as shown in Figure 7.19. From the 10-cm position on the ruler, let the marble roll into the cup
positioned at the bottom of the ruler. Measure the distance the cup moves before stopping. What forces caused it to stop?
What happened to the kinetic energy of the marble at the bottom of the ruler? Next, place the marble at the 20-cm and the
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7.6 Conservation of Energy
Law of Conservation of Energy
Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The law of
conservation of energy can be stated as follows:

Total energy is constant in any process. It may change in form or be transferred from one system to another, but the total
remains the same.

We have explored some forms of energy and some ways it can be transferred from one system to another. This exploration led to
the definition of two major types of energy—mechanical energy and energy transferred via work done by
nonconservative forces . But energy takes many other forms, manifesting itself in many different ways, and we need to be
able to deal with all of these before we can write an equation for the above general statement of the conservation of energy.

Other Forms of Energy than Mechanical Energy
At this point, we deal with all other forms of energy by lumping them into a single group called other energy ( ). Then we can
state the conservation of energy in equation form as

All types of energy and work can be included in this very general statement of conservation of energy. Kinetic energy is ,
work done by a conservative force is represented by , work done by nonconservative forces is , and all other energies are
included as . This equation applies to all previous examples; in those situations was constant, and so it subtracted out
and was not directly considered.

30-cm positions and again measure the distance the cup moves after the marble enters it. Plot the distance the cup moves
versus the initial marble position on the ruler. Is this relationship linear?

With some simple assumptions, you can use these data to find the coefficient of kinetic friction of the cup on the table.
The force of friction on the cup is , where the normal force is just the weight of the cup plus the marble. The normal
force and force of gravity do no work because they are perpendicular to the displacement of the cup, which moves
horizontally. The work done by friction is . You will need the mass of the marble as well to calculate its initial kinetic
energy.

It is interesting to do the above experiment also with a steel marble (or ball bearing). Releasing it from the same positions on
the ruler as you did with the glass marble, is the velocity of this steel marble the same as the velocity of the marble at the
bottom of the ruler? Is the distance the cup moves proportional to the mass of the steel and glass marbles?

Figure 7.19 Rolling a marble down a ruler into a foam cup.

The Ramp
Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how
the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work. Click to
open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/the-ramp)
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